General description
NanoFabTx™ PLGA-nano reagent kit is a nanoformulation kit designed for the synthesis of specifically sized, drug-encapsulating poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The NanoFabTx™ PLGA-nano reagent kit provides reagents (PLGA and stabilizer) and protocols to synthesize polymeric nanoparticles 75 to 200 nm in size. One protocol describes how to use the kit with standard glassware using a nanoprecipitation or solvent-displacement method. The second protocol describes how to use the kit with the NanoFabTx™ Microfluidic - nano device kit (Cat.No. 911593) for the fabrication of nanoparticles using microfluidic methods.
Application
With NanoFabTx™ PLGA-nano reagent kit, users can simplify their methods for PLGA nanoparticle synthesis and their drug loading experiments. Our protocols describe how to tune the synthetic parameters to achieve monodisperse nanoparticles 75 nm in size, 200 nm in size, or any size in between. As a result, the kit enables users to synthesize and test different particle sizes and identify the ideal size and drug loading of PLGA nanocarriers for their research application. The resulting particles are biocompatible and biodegradable and can be further modified to target specific tissues or to ensure slow and sustained drug release. PLGA is a biocompatible and biodegradable polymer that is approved by the FDA for biomedical and pharmaceutical applications and that is used widely in drug delivery systems for sustained release of many different types of therapeutic molecules. PLGA-based nanocarriers can be used to encapsulate both hydrophobic drugs like curcumin and lipophilic drugs like docetaxel. PLGA nanocarriers synthesized with the NanoFabTx™ kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery, and vaccine delivery. Polymeric nanoparticles are useful for intravenous or systemic delivery of drug molecules. For example, polymeric nanocarriers improve drug dissolution and solubility of hydrophobic and lipophilic drugs. In addition, the small size of polymeric nanocarriers make them much more likely than larger microparticles to bypass the reticuloendothelial system and complement system, usually leading to longer circulation half-lives. In addition, nanoparticles can pass through the blood-brain barrier, through tumor vasculature, and can enter cells via pinocytosis.
Features and Benefits
- Step-by-step protocols developed and tested by our formulation scientists
- Flexible synthesis tool to create uniform and reproducible nanoparticles
- Choose from standard glassware-based nanoprecipitation or microfluidic-based protocols
- Optimized to make nanoparticles 75-200 nm nanoprecipitation or microfluidics with low polydispersity
- Based on non-toxic, biodegradable polymers
Legal Information
NANOFABTX is a trademark of Sigma-Aldrich Co. LLC
- UPC:
- 41105903
- Condition:
- New
- Weight:
- 1.00 Ounces
- HazmatClass:
- No
- WeightUOM:
- LB
- MPN:
- 909637-1KT
- Product Size:
- 1KT